
Autofluor™

The gel (7%, 1mm) in the illustration at left was dehydrated in DMSO (dimethylsulfoxide) for one hour, then impregnated in PPO-DMSO for one hour and precipitated and dried. The right gel was impregnated with Autofluor for one hour and dried. Both gels were exposed for 24 hours at -76°C on Kodak XR-5 X-OMat film. The single tritiated band contains 5000 dpm. Note the higher degree of resolution and band discrimination with Autofluor vs PPO-DMSO.

APPLICATIONS

Autoradiography81	Staining of nucleic acids 77
Southern blotting78	Staining proteins in gels82
Northern blotting78	

- High Resolution Autoradiographic Image Intensifier
- Rapid enhancement of low energy beta-emitters such as ³H, ¹⁴C, and ³⁵S
- For polyacrylamide gels, paper chromatography, and TLC plates
- Water based, odorless, contains no DMSO

Autofluor represents the first water soluble scintillation phosphor to be developed and applied directly for use as an autoradiographic image intensifier. Autofluor rapidly penetrates acrylamide gel systems and maximizes energy transfer from labeled compound to phosphor. Autofluor contains no dimethylsulfoxide or aromatic solvents. Therefore, the hazards of use related to these materials are eliminated. The band distortion that is associated with using nonaqueous enhancers is also eliminated.

The Autofluor procedure is the shortest and easiest procedure yet developed for enhancement and visualization of beta-emitters. In an independent test¹ comparing eight different fluorographic methods for the detection of ³⁵S-labeled proteins in polyacrylamide gels, Autofluor was the most effective. With Autofluor, the dpm/mm² required to half-saturate the x-ray film was 1/8 that required by autoradiography alone.

Perng (1988), Analytical Biochemistry, 173, 387-392

Product Name	Cat. No.	Size	
Autofluor LS-315	LS-315	1 Liter (1-3)	
		1 Liter (4 +)	

Bromophenol Blue

Bromophenol Blue is used as a tracking dye, because its charge/mass ratio allows it to comigrate with smaller macromolecules through PAGE and Agarose gels. The dye undergoes a color shift to yellow at acidic pH.

Product Name	Cat. No.	Size	
Bromophenol Blue	HS-603	10 g	

Bromocresol Green

Bromocresol Green is used as a tracking dye for DNA electrophoresis in agarose.

Product Name	Cat. No.	Size
Bromocresol Green	HS-602	5 g

Xylene Cyanole FF

Xylene Cyanole is a tracking dye for DNA Electrophoresis.

Product Name	Cat. No.	Size
Xylene Cyanole FF	HS-608	25 g